Abstract
We report on low operating voltage transistors based on polymer-sorted semiconducting (6,5) single-walled carbon nanotube (SWNT) networks processed from solution at room temperature. The (6,5) SWNTs were separated from the as-received carbon nanotubes mixture using a polyfluorene-based derivative as the sorting and dispersing polymer agent. As-prepared devices exhibit primarily p-type behavior with channel current on/off ratio >103 and hole mobility ≈2cm2 V-1 s-1. These transistor characteristics enable realization of low-voltage unipolar inverters with wide noise margins and high signal gain (>5). Polymer/(6,5) SWNT transistors were also fabricated on free-standing polyimide foils. The devices exhibit even higher hole mobility (≈8cm2 V-1 s-1) and on/off ratios (>104) while remaining fully functional when bent to a radius of 4mm.
Original language | English (US) |
---|---|
Article number | 193302 |
Journal | Applied Physics Letters |
Volume | 106 |
Issue number | 19 |
DOIs | |
State | Published - May 11 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 AIP Publishing LLC.
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)