Polymer crystallisation: Role of metastability and the confluence of thermodynamic and kinetic factors

A. Keller, S. Rastogi, M. H. Hikosaka

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Consideration is given to the effect of size on the thermodynamic stability in situations where two or more phase variants compete in the course of a phase transformation. It is found that, pending on material parameters, a situation can arise where the stabilities of the competing phases invert with size. Such a size induced stability inversion can have a profound influence on phase development in general connecting also with the kinetics of the phase transformation. Specifically, this newly considered combination of interrelated thermodynamic (stability) and kinetic (rates) factors can provide an explanation for the frequently experienced dominance of metastable phases (the century old Ostwald Stage Rule). When applied to polymers, as in the example of polyethylene, it provides a new outlook for polymer crystallisation. Amongst others it creates a unified approach for the two, so far largely disconnected areas of chain folded and extended chain type crystallisation incorporating (not contradicting!) existing approaches within a widened framework.
Original languageEnglish (US)
Pages (from-to)67-81
Number of pages15
JournalMacromolecular Symposia
Volume124
DOIs
StatePublished - Jan 1 1997

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2021-02-16

Fingerprint

Dive into the research topics of 'Polymer crystallisation: Role of metastability and the confluence of thermodynamic and kinetic factors'. Together they form a unique fingerprint.

Cite this