Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

Dooli Kim, Hakkim Vovusha, Udo Schwingenschlögl, Suzana Pereira Nunes

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


We fabricated flat-sheet and hollow fiber membranes from polyethersulfone (PES) solutions in two ionic liquids: 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP) and 1,3-dimethylimidazolium dimethyl phosphate ([MMIM]DMP). The solvents are non-volatile and less toxic than organic solvents, such as dimethylformamide (DMF). The membranes morphologies were compared with those of membranes prepared from solutions in DMF, using electron microscopy. Water permeance, solute rejection and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained using classical Flory-Huggins theory, which does not consider the coulombic contributions in ionic liquids. The differences in solubility could be understood, by applying density functional theory to estimate the interaction energy between the different polymers and solvents. The theoretical results were supported by experimental measurements of intrinsic viscosity and dynamic light scattering (DLS).
Original languageEnglish (US)
Pages (from-to)161-161
Number of pages1
JournalJournal of Membrane Science
StatePublished - Jun 10 2017

Bibliographical note

KAUST Repository Item: Exported on 2018-05-17
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).


Dive into the research topics of 'Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids'. Together they form a unique fingerprint.

Cite this