TY - JOUR
T1 - Point-of-Interest Recommendation with Global and Local Context
AU - Han, Peng
AU - Shang, Shuo
AU - Sun, Aixin
AU - Zhao, Peilin
AU - Zheng, Kai
AU - Zhang, Xiangliang
N1 - KAUST Repository Item: Exported on 2021-02-25
PY - 2021
Y1 - 2021
N2 - The task of point of interest (POI) recommendation aims to recommend unvisited places to users based on their check-in history. A major challenge in POI recommendation is data sparsity, because a user typically visits only a very small number of POIs among all available POIs. In this paper, we propose AUC-MF to address the POI recommendation problem by maximizing Area Under the ROC curve (AUC). AUC has been widely used for measuring classification performance with imbalanced data distributions. To optimize AUC, we transform the recommendation task to a classification problem, where the visited locations are positive examples and the unvisited are negative ones. We define a new lambda for AUC to utilize the LambdaMF model, which combines the lambda-based method and matrix factorization model in collaborative filtering. Many studies have shown that geographic information plays an important role in POI recommendation. In this study, we focus on two levels geographic information: local similarity and global similarity. We further show that AUC-MF can be easily extended to incorporate geographical contextual information for POI recommendation.
AB - The task of point of interest (POI) recommendation aims to recommend unvisited places to users based on their check-in history. A major challenge in POI recommendation is data sparsity, because a user typically visits only a very small number of POIs among all available POIs. In this paper, we propose AUC-MF to address the POI recommendation problem by maximizing Area Under the ROC curve (AUC). AUC has been widely used for measuring classification performance with imbalanced data distributions. To optimize AUC, we transform the recommendation task to a classification problem, where the visited locations are positive examples and the unvisited are negative ones. We define a new lambda for AUC to utilize the LambdaMF model, which combines the lambda-based method and matrix factorization model in collaborative filtering. Many studies have shown that geographic information plays an important role in POI recommendation. In this study, we focus on two levels geographic information: local similarity and global similarity. We further show that AUC-MF can be easily extended to incorporate geographical contextual information for POI recommendation.
UR - http://hdl.handle.net/10754/667654
UR - https://ieeexplore.ieee.org/document/9355002/
U2 - 10.1109/TKDE.2021.3059744
DO - 10.1109/TKDE.2021.3059744
M3 - Article
SN - 2326-3865
SP - 1
EP - 1
JO - IEEE Transactions on Knowledge and Data Engineering
JF - IEEE Transactions on Knowledge and Data Engineering
ER -