Abstract
The ability of MXenes to efficiently absorb light is greatly enriched by the surface plasmons oscillating at their two-dimensional (2D) surfaces. Thus far, MXenes have shown impressive plasmonic absorptions spanning the visible and infrared (IR) regimes. However, their potential use in IR optoelectronic applications, including photodiodes, has been marginally investigated. Besides, their relatively low resistivity has limited their use as photosensing materials due to their intrinsic high dark current. Herein, heterostructures made of methylammonium lead triiodide (MAPbI3) perovskite and niobium carbide (Nb2CTx) MXene are prepared with a matching band structure and exploited for self-powered visible-near IR (NIR) photodiodes. Using MAPbI3 has expanded the operation range of the MAPbI3/Nb2CTx photodiode to the visible regime while suppressing the relatively large dark current of the NIR-absorbing Nb2CTx. In consequence, the fabricated MAPbI3/Nb2CTx photodiode has responded linearly to white light illumination with a responsivity of 0.25 A/W and a temporal photoresponse of
Original language | English (US) |
---|---|
Journal | ACS Nano |
DOIs | |
State | Published - May 1 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-05-10Acknowledgements: Supported by King Abdullah University of Science and Technology (KAUST). Z.L. thanks Dr. Tien Khee Ng and Dr. Shuiqin Zheng for the help with the 1064 nm laser.
ASJC Scopus subject areas
- General Physics and Astronomy
- General Materials Science
- General Engineering