Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors

Vincent K.S. Hsiao, Siu Fung Leung, Yung Chi Hsiao, Po Kai Kung, Ying Chih Lai, Zong Hong Lin, Khaled N. Salama, Husam N. Alshareef, Zhong Lin Wang, Jr-Hau He

Research output: Contribution to journalArticlepeer-review

24 Scopus citations


Efficient carrier extraction is essential for high performance optoelectronic devices, such as solar cells and photodetectors. Conventional strategies to separate photogenerated carriers typically involve the fabrication of a p-n junction by doping and the use of carrier selective charge transport layers. However, these techniques often require high temperature processes or costly materials. In this work, we demonstrate an innovative and simple approach of extracting photogenerated carriers from organometallic halide perovskites utilizing triboelectricity. The triboelectric device can be easily fabricated at low temperature using inexpensive materials on plastic substrates, enabling it to be readily integrated into self-powered optoelectronic devices. As a proof-of-concept, we fabricated a triboelectrics-assisted perovskite photodetector, which enabled us to study the surface charges generated using different electrical contacts and bending conditions performed by the device. With the assistance of a triboelectric charge-induced electric field, the photocurrent and transient photoresponses were significantly enhanced. Furthermore, we integrated the plastic triboelectric device with a flexible photodetector to demonstrate this carrier collection approach in flexible/wearable electronics. To the best of our knowledge, this work is the first report of carrier extraction in organometallic halide perovskite photodetector by triboelectric charges, demonstrating a potential use for carrier extraction in other semiconductor-based optoeletronic devices.
Original languageEnglish (US)
Pages (from-to)103958
JournalNano Energy
StatePublished - Aug 2 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): FCC/1/3079-08-01, OSR-2016-CRG5-3005
Acknowledgements: This work was financially supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (OSR-2016-CRG5-3005), KAUST solar center (FCC/1/3079-08-01), KAUST Sensor Initiative, KAUST baseline funding, and the Ministry of Science and Technology (MOST), Taiwan, under project number MOST-107-2221-E-260-016-MY3.gs5


Dive into the research topics of 'Photo-carrier extraction by triboelectricity for carrier transport layer-free photodetectors'. Together they form a unique fingerprint.

Cite this