Phosphoric acid modified Al-TUD-1 material to enhance hydrodesulfurization activities of dibenzothiophene and FCC diesel

Chengkun Xiao, Peng Zheng, Yu Shi, Di Hu, Jinlin Mei, Gang Wang, Aijun Duan, Guiyuan Jiang, Jian Liu

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Al-TUD-1 (AT) material was successfully prepared via sol-gel method and modified by phosphoric acid. A series characterization of NiMoP/AT catalysts results indicated that after the addition of phosphoric acid, the NiMoP/AT-x series catalysts still retained the large specific surface area and pore structure, which accommodated the active metals for better dispersion. Phosphoric acid could effectively ameliorate the acidity of catalyst and modulate metal-support-interaction (MSI), then the molybdenum species were sulfided to transform into octahedral MoS2 active species with higher degree of sulfurization and dispersion degree. Catalytic performances of different catalysts were estimated using Dibenzothiophene (DBT) and Fluid Catalytic Cracking (FCC) diesel as feedstock, The NiMoP/AT-2 exhibited the maximal DBT hydrodesulfurization (HDS) efficiency of 98.6 % and the highest values of HDS (99.1 %) and hydrodenitrogenation (HDN) (98.5 %) efficiencies for FCC diesel.
Original languageEnglish (US)
Pages (from-to)154-161
Number of pages8
JournalCatalysis Today
Volume374
DOIs
StatePublished - Jun 10 2021
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2022-06-15
Acknowledged KAUST grant number(s): OSR-2019-CPF-4103.2
Acknowledgements: This research was supported by the National Natural Science Foundation of China (No. 21878330, 21676298), the National Science and Technology Major Project (2019YFC1907602), the CNPC Key Research Project (2016E-0707), and the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award (No. OSR-2019-CPF-4103.2)
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

ASJC Scopus subject areas

  • General Chemistry
  • Catalysis

Fingerprint

Dive into the research topics of 'Phosphoric acid modified Al-TUD-1 material to enhance hydrodesulfurization activities of dibenzothiophene and FCC diesel'. Together they form a unique fingerprint.

Cite this