Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability

Azza Altawashi, Christoph A Gehring

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Background: Cyclic adenosine 3?5?-monophosphate (cAMP) is a key regulator of many cellular processes, including in the neuronal system, and its activity is tuned by Phosphodiesterase (PDE) activation. Further, the CC2D1A protein, consisting of N-Terminal containing four DM14 domains and C-terminal containing C2 domain, was shown to regulate the cAMP-PKA pathway. A human deletion mutation lacking the fourth DM14 and the adjacent C2 domain results in Non Syndromic Intellectual Disability (NSID) also referred to as Non Syndromic Mental Retardation (NSMR). Findings. Here we demonstrate that in Mouse Embryonic Fibroblasts (MEF) CC2D1A co-localizes with PDE4D in the cytosol before cAMP stimulation and on the periphery after stimulation, and that the movement to the periphery requires the full-length CC2D1A. In CC2D1A mouse mutant cells, the absence of three of the four DM14 domains abolishes migration of the complex to the periphery and causes constitutive phosphorylation of PDE4D Serine 126 (Sssup126esup) via the cAMP-dependent protein kinase A (PKA) resulting in PDE4D hyperactivity. Suppressing PDE4D activity with Rolipram in turn restores the down-stream phosphorylation of the "cAMP response element-binding protein" (CREB) that is defective in mouse mutant cells. Conclusion: Our findings suggest that CC2D1A is a novel regulator of PDE4D. CC2D1A interacts directly with PDE4D regulating its activity and thereby fine-tuning cAMP-dependent downstream signaling. Based on our in vitro evidence we propose a model which links CC2D1A structure and function to cAMP homeostasis thereby affecting CREB phosphorylation. We speculate that CC2D1A and/or PDE4D may be promising targets for therapeutic interventions in many disorders with impaired PDE4D function such as NSID. 2013 Al-Tawashi and Gehring; licensee BioMed Central Ltd.
Original languageEnglish (US)
Pages (from-to)47
JournalCell Communication and Signaling
Volume11
Issue number1
DOIs
StatePublished - Jul 4 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • Cell Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability'. Together they form a unique fingerprint.

Cite this