Abstract
An energy efficient method of concurrent hydrogen gas and struvite (MgNH 4PO 4·6H 2O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite-precipitation cell (MESC). The MESC cathodes were either stainless steel 304 mesh or flat plates. Phosphate removal ranged from 20% to 40%, with higher removals obtained using mesh cathodes than with flat plates. Cathode accumulated crystals were verified as struvite using a scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS). Crystal accumulation did not affect the rate of hydrogen production in struvite reactors. The rate of struvite crystallization (g/m 2-h) and hydrogen production (m 3/m 3-d) were shown to be dependent on applied voltage and cathode material. Overall energy efficiencies (substrate and electricity) were high (73±4%) and not dependent on applied voltage. These results show that MESCs may be useful both as a method for hydrogen gas and struvite production. © 2011 Elsevier Ltd.
Original language | English (US) |
---|---|
Pages (from-to) | 110-115 |
Number of pages | 6 |
Journal | Bioresource Technology |
Volume | 107 |
DOIs | |
State | Published - Mar 2012 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: This research was supported by Award KUS-I1-003-13 from the King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.