Abstract
Development of flexible and freestanding electrode is attracting great attention in lithium–sulfur (Li–S) batteries, but the severe capacity fading caused by the lithium polysulfides (PSs) shuttle effect remains challenging. Herein, a completely new polymeric binder of polyethersulfone is introduced. Not only it enables massive production of flexible/current-free electrode by a novel concept of “phase-inversion” approach but also the resultant polymeric networks can effectively trap the soluble polysulfides within the electrode, owing to the higher hydrophilicity and stronger affinity properties than the routine polyvinylidene fluoride. Coupling with polysulfide-based electrolyte, the Li–S cell shows a higher capacity of 1141 mAh g−1, a lower polarization of 192 mV, and a more stable capacity retention with 100% Coulombic efficiency over 100 cycles at 0.25C. The advantages of favored binder and electrolyte are further demonstrated in lithium-ion sulfur full battery with lithiated graphite anode, which demonstrates much improved performance than those previously reported. This work not only introduces a novel strategy for flexible freestanding electrodes but also enlightens the importance of coupling electrodes and electrolytes to higher performances for Li–S battery.
Original language | English (US) |
---|---|
Article number | 1802244 |
Journal | Advanced Functional Materials |
Volume | 28 |
Issue number | 34 |
DOIs | |
State | Published - Aug 22 2018 |
Bibliographical note
Publisher Copyright:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- flexible freestanding electrodes
- lithium–sulfur batteries
- phase inversion
- polyethersulfone
- polysulfide-modified electrolytes
ASJC Scopus subject areas
- General Chemistry
- Condensed Matter Physics
- General Materials Science