Abstract
Heterogeneous data is endemic due to the use of diverse models and settings of devices by hospitals in the field of medical imaging. However, there are few open-source frameworks for federated heterogeneous medical image analysis with personalization and privacy protection without the demand to modify the existing model structures or to share any private data. Here, we proposed PPPML-HMI, a novel open-source learning paradigm for personalized and privacy-preserving federated heterogeneous medical image analysis. To our best knowledge, personalization and privacy protection were discussed simultaneously for the first time under the federated scenario by integrating the PerFedAvg algorithm and designing the novel cyclic secure aggregation with the homomorphic encryption algorithm. To show the utility of PPPML-HMI, we applied it to a simulated classification task namely the classification of healthy people and patients from the RAD-ChestCT Dataset, and one real-world segmentation task namely the segmentation of lung infections from COVID-19 CT scans. Meanwhile, we applied the improved deep leakage from gradients to simulate adversarial attacks and showed the strong privacy-preserving capability of PPPML-HMI. By applying PPPML-HMI to both tasks with different neural networks, a varied number of users, and sample sizes, we demonstrated the strong generalizability of PPPML-HMI in privacy-preserving federated learning on heterogeneous medical images.
Original language | English (US) |
---|---|
Article number | 107861 |
Journal | Computers in Biology and Medicine |
Volume | 169 |
DOIs | |
State | Published - Feb 2024 |
Bibliographical note
Publisher Copyright:© 2023 Elsevier Ltd
Keywords
- Federated learning
- Medical imaging
- Personalization
- Privacy
ASJC Scopus subject areas
- Health Informatics
- Computer Science Applications