Abstract
Wearable electronics demand high adhesion properties through various skin conditions. Here, 3D-printed porous skin patches with octopus-like suckers of different geometries are presented. Experimental and theoretical studies are investigated to show an enhanced, low-cost 3D-printed bioinspired patches that successfully obtain biosignals comparable to commercial electrodes.Clinical Relevance - This work establishes low-cost, highly-adhesive skin patches that are irritation- and contamination-free with effortless peel-off technique for biosignal measurement.
Original language | English (US) |
---|---|
Title of host publication | 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350324471 |
DOIs | |
State | Published - 2023 |
Event | 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia Duration: Jul 24 2023 → Jul 27 2023 |
Publication series
Name | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
---|---|
ISSN (Print) | 1557-170X |
Conference
Conference | 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 |
---|---|
Country/Territory | Australia |
City | Sydney |
Period | 07/24/23 → 07/27/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
ASJC Scopus subject areas
- Signal Processing
- Biomedical Engineering
- Computer Vision and Pattern Recognition
- Health Informatics