TY - JOUR
T1 - Perhydrocarbyl ReVII complexes
T2 - Comparison of molecular and surface complexes
AU - Chabanas, Mathieu
AU - Baudouin, Anne
AU - Copéret, Christophe
AU - Basset, Jean Marie
AU - Lukens, Wayne
AU - Lesage, Anne
AU - Hediger, Sabine
AU - Emsley, Lyndon
PY - 2003/1/15
Y1 - 2003/1/15
N2 - The molecular complex [Re(≡CtBu)(=CHtBu) (CH2tBu)2] (1) reacts with a silica partially dehydroxylated at 700 °C to give syn-2,[(≡SiO)Re(≡CtBu)(=CHtBu) (CH2tBu)], as a single isomer according to mass-balance analysis, IR, and solid-state NMR spectroscopy. 1D and 2D solid-state NMR (HETCOR and long-range HETCOR) on a 13C-labeled-2 has allowed us to observe the chemical shifts of all carbons (including those that are not labeled) and ascertain their assignments. Moreover, EXAFS data are consistent with the presence of two carbons at a relatively short distance (1.79 A), which cannot be deconvoluted, but which are consistent with the presence of alkylidene and alkylidyne carbons along with two other first neighbors at a longer distance (2.01 Å), the alkyl carbon and the O atom by which the Re is attached to the surface. Moreover, the data also suggest the presence of a siloxane bridge of the silica surface at 2.4 Å in the coordination sphere of the Re center. Thermal and photochemical treatment allow us to observe the anti isomer, which was also fully characterized by 1 D and 2D solid-state NMR. This behavior parallels the reactivity of molecular Re complexes, and their respective 1H and 13C chemical shifts match those of the corresponding molecular analogues syn- and anti-2m and n. Finally, the grafting of 1 onto silica involves the reaction of both the alkyl and the alkylidene ligand with an equiprobability, leaving the alkylidyne as a spectator ligand. Noteworthy is the formation of 2 [(≡SiO)Re(≡CtBu)(=CHtBu) (CH2tBu)], rather than the corresponding trisneopentyl-neopentylidyne Re complex, monografted on silica, [(≡SiO)Re(≡CtBu)(CH2- tBu)3], which would have been expected from the reactivity of 1 with various molecular Brönsted acids and which also suggests that a proximal siloxane bridge forces the α-H abstraction process, leading to syn-2a.
AB - The molecular complex [Re(≡CtBu)(=CHtBu) (CH2tBu)2] (1) reacts with a silica partially dehydroxylated at 700 °C to give syn-2,[(≡SiO)Re(≡CtBu)(=CHtBu) (CH2tBu)], as a single isomer according to mass-balance analysis, IR, and solid-state NMR spectroscopy. 1D and 2D solid-state NMR (HETCOR and long-range HETCOR) on a 13C-labeled-2 has allowed us to observe the chemical shifts of all carbons (including those that are not labeled) and ascertain their assignments. Moreover, EXAFS data are consistent with the presence of two carbons at a relatively short distance (1.79 A), which cannot be deconvoluted, but which are consistent with the presence of alkylidene and alkylidyne carbons along with two other first neighbors at a longer distance (2.01 Å), the alkyl carbon and the O atom by which the Re is attached to the surface. Moreover, the data also suggest the presence of a siloxane bridge of the silica surface at 2.4 Å in the coordination sphere of the Re center. Thermal and photochemical treatment allow us to observe the anti isomer, which was also fully characterized by 1 D and 2D solid-state NMR. This behavior parallels the reactivity of molecular Re complexes, and their respective 1H and 13C chemical shifts match those of the corresponding molecular analogues syn- and anti-2m and n. Finally, the grafting of 1 onto silica involves the reaction of both the alkyl and the alkylidene ligand with an equiprobability, leaving the alkylidyne as a spectator ligand. Noteworthy is the formation of 2 [(≡SiO)Re(≡CtBu)(=CHtBu) (CH2tBu)], rather than the corresponding trisneopentyl-neopentylidyne Re complex, monografted on silica, [(≡SiO)Re(≡CtBu)(CH2- tBu)3], which would have been expected from the reactivity of 1 with various molecular Brönsted acids and which also suggests that a proximal siloxane bridge forces the α-H abstraction process, leading to syn-2a.
UR - http://www.scopus.com/inward/record.url?scp=0037438683&partnerID=8YFLogxK
U2 - 10.1021/ja020136s
DO - 10.1021/ja020136s
M3 - Article
C2 - 12517163
AN - SCOPUS:0037438683
SN - 0002-7863
VL - 125
SP - 492
EP - 504
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 2
ER -