Abstract
In order to detect low mass and mature planets inwards of approximately 5 AU, future direct imaging instruments will require precision wavefront control that operates at relatively high speed. The self-coherent camera (SCC) is a promising technique for measuring the wavefront from science images at the focal plane. We present here results from NRC’s NEW-EARTH lab testing of the Fast Atmospheric SCC Technique, a variant of the SCC and its integration with a Lyot-stop Low-Order Wavefront Sensor. We demonstrate correction of quasi-static speckles in a half dark hole reaching raw 1σ contrasts on the order of 5 × 10−7 at 10 λ/D. We also present a simplified process for extracting measurements and/or DM commands from SCC images using a single matrixvector multiply. This testing and development are important steps on the way to the upcoming Subaru Pathfinder Instrument for Detection of Exoplanets and Removal of Speckles and the Gemini Planet Imager’s CAL2 upgrade.
Original language | English (US) |
---|---|
Title of host publication | Adaptive Optics Systems VIII |
Publisher | SPIE |
DOIs | |
State | Published - Aug 29 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-10-25Acknowledgements: We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), 466479467. This research used the facilities of the Canadian Astronomy Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency. The authors are grateful to have performed this work on the traditional territories of the Coast Salish and Lekwungen-speaking peoples of Vancouver Island.