Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

Xinzheng Lan, Oleksandr Voznyy, Amirreza Kiani, F. Pelayo García de Arquer, Abdullah Saud Abbas, Gi-Hwan Kim, Mengxia Liu, Zhenyu Yang, Grant Walters, Jixian Xu, Mingjian Yuan, Zhijun Ning, Fengjia Fan, Pongsakorn Kanjanaboos, Illan J. Kramer, David Zhitomirsky, Philip Lee, Alexander Perelgut, Sjoerd Hoogland, Edward H. Sargent

Research output: Contribution to journalArticlepeer-review

289 Scopus citations

Abstract

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.
Original languageEnglish (US)
Pages (from-to)299-304
Number of pages6
JournalAdvanced Materials
Volume28
Issue number2
DOIs
StatePublished - Nov 18 2015
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-11-009-21
Acknowledgements: X.L., O.V., A.K., and F.P.G.A. contributed equally to this work. This publication is based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund – Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea govenment Ministry of Knowledge Economy (2012T100100740). The authors thank E. Palmiano, L. Levina, A. Labelle, R. Wolowiec, and D. Kopilovic for their help over the course of this study.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance'. Together they form a unique fingerprint.

Cite this