Abstract
Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III) and As(V). Finally, this material can be produced with nanoscale dimensions which enhance both its capacity and removal. The objective of this study was to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe 3O4) nanoparticles. We focused on the effect of magnetite particle size on the adsorption and desorption behavior of As(III) and As(V). The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 nm to 12 nm the adsorption capacities for both As(III) and As(V) increase nearly 1000 times. Interestingly, this increase is more than expected from simple considerations of surface area and suggest that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for magnetite nanoparticles. This work suggests that magnetite nanocrystals and magnetic separations offer a promising method for arsenic removal.
Original language | English (US) |
---|---|
Title of host publication | 2006 TMS Fall Extraction and Processing Division: Sohn International Symposium |
Pages | 221-228 |
Number of pages | 8 |
State | Published - Dec 1 2006 |
Externally published | Yes |