Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

Ibrahim Hoteit, Xiaodong Luo, Dinh-Tuan Pham

Research output: Contribution to journalArticlepeer-review

96 Scopus citations

Abstract

This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.
Original languageEnglish (US)
Pages (from-to)528-542
Number of pages15
JournalMonthly Weather Review
Volume140
Issue number2
DOIs
StatePublished - Feb 2012

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

Fingerprint

Dive into the research topics of 'Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*'. Together they form a unique fingerprint.

Cite this