Parametrizing coarse grained models for molecular systems at equilibrium

Evangelia Kalligiannaki, A. Chazirakis, A. Tsourtis, M. A. Katsoulakis, P. Plecháč, V. Harmandaris

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.
Original languageEnglish (US)
Pages (from-to)1347-1372
Number of pages26
JournalThe European Physical Journal Special Topics
Issue number8-9
StatePublished - Oct 10 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01


Dive into the research topics of 'Parametrizing coarse grained models for molecular systems at equilibrium'. Together they form a unique fingerprint.

Cite this