Abstract
In this paper, we present a parametric study of high performance microdisk lasers at 1.55 μm telecom wavelength, monolithically grown on on-axis (001) Si substrates incorporating quantum dots (QDs) as gain elements. In the optimized structure, seven layers of QDs were adopted to provide a high gain as well as a suppressed inhomogeneous broadening. The same laser structure employing quantum wells (QWs) on Si was concurrently evaluated, showing a higher threshold and more dispersive quantum efficiency than the QDs. Finally, a statistical comparison of these Si-based QD microdisk lasers with those grown on InP native substrates was conducted, revealing somewhat higher thresholds but of the same order. The monolithically grown QD microlasers on Si also demonstrated excellent temperature stability, with a record high characteristic temperature of 277 K. This work thus offers helpful insight towards the optimization of reliable Si-based QD lasers at 1550 nm.
Original language | English (US) |
---|---|
Pages (from-to) | 31281-31293 |
Number of pages | 13 |
Journal | Optics Express |
Volume | 25 |
Issue number | 25 |
DOIs | |
State | Published - Dec 11 2017 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-09-18ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics