Parallel sum primal spaces for isogeometric deluxe BDDC preconditioners

L. Beirão da Veiga, L. F. Pavarino*, S. Scacchi, O. B. Widlund, S. Zampini

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    2 Scopus citations

    Abstract

    In this paper, we study the adaptive selection of primal constraints in BDDC deluxe preconditioners applied to isogeometric discretizations of scalar elliptic problems. The main objective of this work is to significantly reduce the coarse space dimensions of the BDDC isogeometric preconditioners developed in our previous works, Beirão da Veiga et al. (Math Mod Meth Appl Sci 23, 1099-1142, 2013a) and Beirão da Veiga et al. (SIAM J Sci Comp 36, A1118-A1139, 2014b), while retaining their fast and scalable convergence rates.

    Original languageEnglish (US)
    Title of host publicationDomain Decomposition Methods in Science and Engineering XXIII
    EditorsHyea Hyun Kim, Axel Klawonn, Eun-Jae Park, Chang-Ock Lee, Olof B. Widlund, Xiao-Chuan Cai, David E. Keyes
    PublisherSpringer Verlag
    Pages17-29
    Number of pages13
    ISBN (Print)9783319523880
    DOIs
    StatePublished - 2017
    Event23rd International Conference on Domain Decomposition Methods, DD23 - Jeju Island, Korea, Republic of
    Duration: Jul 6 2015Jul 10 2015

    Publication series

    NameLecture Notes in Computational Science and Engineering
    Volume116
    ISSN (Print)1439-7358

    Conference

    Conference23rd International Conference on Domain Decomposition Methods, DD23
    Country/TerritoryKorea, Republic of
    City Jeju Island
    Period07/6/1507/10/15

    Bibliographical note

    Publisher Copyright:
    © Springer International Publishing AG 2017.

    ASJC Scopus subject areas

    • General Engineering
    • Computational Mathematics
    • Control and Optimization
    • Discrete Mathematics and Combinatorics
    • Modeling and Simulation

    Fingerprint

    Dive into the research topics of 'Parallel sum primal spaces for isogeometric deluxe BDDC preconditioners'. Together they form a unique fingerprint.

    Cite this