Abstract
An emerging technology for the removal of N-nitrosodimethylamine (NDMA) from drinking and groundwater is reductive destruction using noble metal catalysts and hydrogen gas as a reducing agent. Bimetallic palladium-indium (Pd-In) supported on alumina combines the ability of In to activate NDMA with the hydrogen activating properties of Pd. This study examined the effect of In addition to a commercial 5% Pd by weight on γ-Al2O3 catalyst on the efficacy of NDMA reduction. The pseudo-first-order rate constant increased proportionately to In loading from 0.057 h-1 for 0% In to a maximum of 0.25 h-1 for 1% In and then decreased with additional In loading. Data suggest that hydrogen activation occurred only on Pd surfaces and In activated NDMA 20 times more effectively than Pd on a mass basis. The rate-limiting factor was NDMA activation for In loadings below 1%. The decrease at higher loadings is interpreted as In blocking pore spaces and limiting access to Pd sites, suggesting monatomic hydrogen limitation. The only products detected were dimethylamine and ammonium with carbon and nitrogen balances in excess of 92%, consistent with a mechanism involving reductive N-N bond cleavage. Results from this study serve as a basis for optimizing bimetallic catalysts for treating NDMA contaminated waters.
Original language | English (US) |
---|---|
Pages (from-to) | 3040-3046 |
Number of pages | 7 |
Journal | Environmental Science and Technology |
Volume | 42 |
Issue number | 8 |
DOIs | |
State | Published - Apr 15 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry