Packing and Disorder in Substituted Fullerenes

Naga Rajesh Tummala, Shaaban Ali Kamel Elroby, Saadullah G. Aziz, Chad Risko, Veaceslav Coropceanu, Jean-Luc Bredas

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.
Original languageEnglish (US)
Pages (from-to)17242-17250
Number of pages9
JournalThe Journal of Physical Chemistry C
Volume120
Issue number31
DOIs
StatePublished - Aug 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): N62909-15-1-2003
Acknowledgements: We acknowledge financial support of this work at the Georgia Institute of Technology by the
Deanship of Scientific Research of King Abdulaziz University under an International Collaboration Grant (Award No. D-001-433), the Department of the Navy - Office of Naval
Research under the MURI “Center for Advanced Organic Photovoltaics” (Award No. N00014-
14-1-0580 and N00014-16-1-2520), and King Abdullah University of Science and Technology
(V.C.). The work at the King Abdullah University of Science and Technology has been
supported by the KAUST competitive research funding and the Office of Naval Research -
Global (Award No. N62909-15-1-2003). C.R. thanks the University of Kentucky Vice President
for Research for start-up funds.

Fingerprint

Dive into the research topics of 'Packing and Disorder in Substituted Fullerenes'. Together they form a unique fingerprint.

Cite this