Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study

Duanxing Li, Walaa S. Baslyman, Bhavin Siritanaratkul, Tatsuya Shinagawa, Mani Sarathy, Kazuhiro Takanabe

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

This study simulates a high-temperature reaction in a plug-flow reactor (PFR) for the aromatization of methane via oxidative coupling of methane (OCM) using a state-of-the-art gas-phase chemical kinetic mechanism. Benzene is formed from a methane-oxygen (CH4-O2) feed via formation of ethylene through OCM followed by homogeneous gas-phase aromatization of C2H4 after O2 depletion. Because both OCM and C2H4 aromatization are exothermic reactions, the process is advantageous over an endothermic nonoxidative methane aromatization reaction. For the OCM reaction, the previously reported mechanism in which the catalyst achieves the quasi-equilibrated formation of OH• from an H2O-O2 mixture is included in the gas-phase combustion chemistry reaction network. It is evident that OH• formation increases benzene yield as a consequence of enhanced C2H4 yield from the OCM. The influence of temperature, CH4/O2 ratio, and contact time on benzene yield is elucidated, and reaction pathways leading to aromatic formation are analyzed. The maximum benzene yield on a carbon basis at a total pressure of 1 atm reaches 10% at CH4/O2 ratios from 3 to 6 and temperatures of 800-900 °C (isothermal). Our analysis on the differential rates of production suggests that benzene is formed from the benzyl radical via toluene and from the reaction between allyl and propargyl radicals. Simulations show that using the exothermicity of the process enables adiabatic reactor operation, which is beneficial for reducing the external heat supply (i.e., inlet temperature) by utilizing the exothermic reactions.
Original languageEnglish (US)
Pages (from-to)22884-22892
Number of pages9
JournalIndustrial and Engineering Chemistry Research
Volume58
Issue number51
DOIs
StatePublished - Nov 20 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work at King Abdullah University of Science and Technology (KAUST) was supported by the Office of Sponsored Research with funds given to the Clean Combustion Center and KAUST Catalysis Center.

Fingerprint

Dive into the research topics of 'Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study'. Together they form a unique fingerprint.

Cite this