Abstract
Molecular doping of organic semiconductors creates Coulombically bound charge and counterion pairs through a charge-transfer process. However, their Coulomb interactions and strategies to mitigate their effects have been rarely addressed. Here, we report that the number of free charges and thermoelectric properties are greatly enhanced by overcoming the Coulomb interaction in an n-doped conjugated polymer. Poly(2,2′-bithiazolothienyl-4,4′,10,10′-tetracarboxydiimide) (PDTzTI) and the benchmark N2200 are n-doped by tetrakis (dimethylamino) ethylene (TDAE) for thermoelectrics. Doped PDTzTI exhibits ∼10 times higher free-charge density and 500 times higher conductivity than doped N2200, leading to a power factor of 7.6 μW m–1 K–2 and ZT of 0.01 at room temperature. Compared to N2200, PDTzTI features a better molecular ordering and two-dimensional charge delocalization, which help overcome the Coulomb interaction in the doped state. Consequently, free charges are more easily generated from charge–counterion pairs. This work provides a strategy for improving n-type thermoelectrics by tackling electrostatic interactions.
Original language | English (US) |
---|---|
Pages (from-to) | 1556-1564 |
Number of pages | 9 |
Journal | ACS Energy Letters |
Volume | 4 |
Issue number | 7 |
DOIs | |
State | Published - Jun 10 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): 3737 GRG7
Acknowledgements: This work is supported by a grant from STW/NWO (VIDI 13476). This work is part of the research program of the Foundation of Fundamental Research on Matter (FOM), which is part of The Netherlands Organisation for Scientific Research (NWO). This is a publication by the FOM Focus Group “Next Generation Organic Photovoltaics”, participating in the Dutch Institute for Fundamental Energy Research (DIFFER). X.G. is grateful to the NSFC (51573076), the Shenzhen Basic Research Fund (JCYJ20170817105905899), and the Shenzhen Peacock Plan Project (KQTD20140630110339343). D.B. acknowledges KAUST Competitive Research Grant (3737 GRG7) for financial support. J.L. thanks Shuyan Shao for inspiring discussions.