TY - JOUR
T1 - Outdoor FSO Communications Under Fog: Attenuation Modeling and Performance Evaluation
AU - Esmail, Maged Abdullah
AU - Fathallah, Habib
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/7/18
Y1 - 2016/7/18
N2 - Fog is considered to be a primary challenge for free space optics (FSO) systems. It may cause attenuation that is up to hundreds of decibels per kilometer. Hence, accurate modeling of fog attenuation will help telecommunication operators to engineer and appropriately manage their networks. In this paper, we examine fog measurement data coming from several locations in Europe and the United States and derive a unified channel attenuation model. Compared with existing attenuation models, our proposed model achieves a minimum of 9 dB, which is lower than the average root-mean-square error (RMSE). Moreover, we have investigated the statistical behavior of the channel and developed a probabilistic model under stochastic fog conditions. Furthermore, we studied the performance of the FSO system addressing various performance metrics, including signal-to-noise ratio (SNR), bit-error rate (BER), and channel capacity. Our results show that in communication environments with frequent fog, FSO is typically a short-range data transmission technology. Therefore, FSO will have its preferred market segment in future wireless fifth-generation/sixth-generation (5G/6G) networks having cell sizes that are lower than a 1-km diameter. Moreover, the results of our modeling and analysis can be applied in determining the switching/thresholding conditions in highly reliable hybrid FSO/radio-frequency (RF) networks.
AB - Fog is considered to be a primary challenge for free space optics (FSO) systems. It may cause attenuation that is up to hundreds of decibels per kilometer. Hence, accurate modeling of fog attenuation will help telecommunication operators to engineer and appropriately manage their networks. In this paper, we examine fog measurement data coming from several locations in Europe and the United States and derive a unified channel attenuation model. Compared with existing attenuation models, our proposed model achieves a minimum of 9 dB, which is lower than the average root-mean-square error (RMSE). Moreover, we have investigated the statistical behavior of the channel and developed a probabilistic model under stochastic fog conditions. Furthermore, we studied the performance of the FSO system addressing various performance metrics, including signal-to-noise ratio (SNR), bit-error rate (BER), and channel capacity. Our results show that in communication environments with frequent fog, FSO is typically a short-range data transmission technology. Therefore, FSO will have its preferred market segment in future wireless fifth-generation/sixth-generation (5G/6G) networks having cell sizes that are lower than a 1-km diameter. Moreover, the results of our modeling and analysis can be applied in determining the switching/thresholding conditions in highly reliable hybrid FSO/radio-frequency (RF) networks.
UR - http://hdl.handle.net/10754/618375
UR - http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7515199
UR - http://www.scopus.com/inward/record.url?scp=84984918822&partnerID=8YFLogxK
U2 - 10.1109/JPHOT.2016.2592705
DO - 10.1109/JPHOT.2016.2592705
M3 - Article
SN - 1943-0655
VL - 8
SP - 1
EP - 22
JO - IEEE Photonics Journal
JF - IEEE Photonics Journal
IS - 4
ER -