Orthogonal 4,10 and 6,12 substitution of dibenzo[def,mno]chrysene polycyclic aromatic small molecules

Unsal Koldemir, Jonathan S. Tinkham, Robert Johnson, Bogyu Lim, Henok A. Yemam, Kevin J. Gagnon, Sean Parkin, Alan Sellinger

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


A series of new polycyclic aromatic hydrocarbon compounds based on (4,10-disubstituted-dibenzo[def,mno]chrysene-6,12-dione) and 4,10 di-substituted 6,12-bis(triisopropylsilylethynyl)dibenzo[def,mno]chrysene are reported with tunable electronic properties through varied molecular architecture. Starting with an inexpensive commercially available textile dye known as Vat Orange #3, (4,10-dibromo-dibenzo[def,mno] chrysene-6,12-dione) we extended the conjugation at the 4- and 10-positions by the attachment of both electron rich and deficient hexylvinylphthalimide, thiophene, hexylthiophene, triphenylamine, and hexylbithiophene aromatic groups, and studied the resultant optoelectronic properties. By applying various synthetic metal-catalyzed reactions, soluble dibenzo[def,mno]chrysene and dibenzo[def,mno]chrysene-6,12-dione derivatives were achieved with optical edge band gaps between 2.30 eV and 1.65 eV.
Original languageEnglish (US)
Pages (from-to)8723-8733
Number of pages11
JournalJ. Mater. Chem. C
Issue number34
StatePublished - 2017
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-015-21
Acknowledgements: This work was partially supported by funds provided by the Global Climate and Energy Project (GCEP) award # 1138721 and by the Center for Advanced Molecular Photovoltaics (CAMP), award # KUS-C1-015-21 made by the King Abdullah University of Science and Technology (KAUST). Funding was also provided by the Research Corporation for Science Advancement (RCSA) through the Scialog Collaborative Innovation Award (#22355), and start up funds from the Colorado School of Mines (AS). We thank Prof. Alberto Salleo and Ms Camila Arantxa Cendra Guinassi from Stanford University, Department of Materials Science and Engineering for their help in testing these materials in organic field-effect transistors (OFETs). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Crystallographic data for the structures reported in this paper have been deposited with the CCDC 1526927 and 1526928.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.


Dive into the research topics of 'Orthogonal 4,10 and 6,12 substitution of dibenzo[def,mno]chrysene polycyclic aromatic small molecules'. Together they form a unique fingerprint.

Cite this