Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review

Sandeep Goud Surya, Harshil N. Raval, Rafiq Ahmad, Prashant Sonar, Khaled N. Salama, V.Ramgopal Rao

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


Organic field effect transistors (OFETs) have been the focus of sensing application research during the last two decades. In comparison to their inorganic counterparts, OFETs have multiple advantages such as low-cost manufacturing, large area coverage, flexibility, and readily tunable electronic material properties. To date, various organic semiconductors (OSCs), both polymers and small molecules, have been extensively researched for developing active channel layers in OFETs, thus enhancing their sensitivity and selectivity. However, OFET devices still need to be optimized to demonstrate reliable performance at the device level and in sensing applications. This review begins with an introduction of the OFETs with an emphasis on their geometry, materials (OSCs), fabrication process, and data analysis. After this, multiple applications are discussed, and the progress regarding sensing elements and precisions is highlighted. Finally, the challenges and possible future directions of OFET arrays in embedded sensing platforms are presented.
Original languageEnglish (US)
Pages (from-to)27-36
Number of pages10
JournalTrAC Trends in Analytical Chemistry
StatePublished - Dec 3 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01


Dive into the research topics of 'Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review'. Together they form a unique fingerprint.

Cite this