Organic ferroelectric memory devices with inkjet-printed polymer electrodes on flexible substrates

Unnat Sampatraj Bhansali, Husam N. Alshareef

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Drop-on-demand piezoelectric inkjet-printing technique has been used to fabricate a functional cross-bar array of all-organic ferroelectric memory devices. The polymer-ferroelectric-polymer device consists of a ferroelectric copolymer P(VDF-TrFE) film sandwiched between inkjet-patterned, continuous, orthogonal lines of PEDOT:PSS polymer as the bottom and top electrodes. These devices exhibit well-saturated hysteresis curves with a maximum remnant polarization (Pr) = 6.7 μC/cm2, coercive field (E c) = 55 MV/m and a peak capacitance density of 45 nF/cm2. Our polarization fatigue measurements show that these devices retain ∼100% and 45% of their initial Pr values after 103 and 10 5 stress cycles, respectively. The overall performance and polarization retention characteristics of these ferroelectric capacitors with inkjet-printed polymer electrodes are comparable to metal and spin-cast polymer electrodes suggesting their potential use in large-area flexible electronics. © 2013 Elsevier Ltd. All rights reserved.
Original languageEnglish (US)
Pages (from-to)68-73
Number of pages6
JournalMicroelectronic Engineering
Volume105
DOIs
StatePublished - May 2013

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors would like to thank Mr. Ahad Syed (NanoFab, MUST) for his help with training on the inkjet printer. The authors also acknowledge the generous financial support from the KAUST baseline fund and Saudi Basic Industries (SABIC) Grant No. 2000000015.

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Organic ferroelectric memory devices with inkjet-printed polymer electrodes on flexible substrates'. Together they form a unique fingerprint.

Cite this