Abstract
Donor–acceptor organic solar cells often show low open-circuit voltages (VOC) relative to their optical energy gap (Eg) that limit power conversion efficiencies to ~12%. This energy loss is partly attributed to the offset between Eg and that of intermolecular charge transfer (CT) states at the donor–acceptor interface. Here we study charge generation occurring in PIPCP:PC61BM, a system with a very low driving energy for initial charge separation (Eg−ECT ~ 50 meV) and a high internal quantum efficiency (ηIQE ~ 80%). We track the strength of the electric field generated between the separating electron-hole pair by following the transient electroabsorption optical response, and find that while localised CT states are formed rapidly (
Original language | English (US) |
---|---|
Journal | Nature Communications |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Jan 18 2018 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: We would like to acknowledge Professor René Janssen and Professor Weiwei Li for supply of the PDPP polymers and fruitful discussion. S.M.M. and R.H.F. acknowledge support from the KAUST Competitive Research Grant Program. N.A.R., T.-Q.N. and G.C.B. acknowledge support from the Department of the Navy, Office of Naval Research (award nos. N00014-14-1-0580 and N00014-16-1-25200). A.C., P.C., N.C.G. and A.R. acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme for the Physics of Sustainability.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.