Option-Aware Adversarial Inverse Reinforcement Learning for Robotic Control

Jiayu Chen, Tian Lan, Vaneet Aggarwal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Hierarchical Imitation Learning (HIL) has been proposed to recover highly-complex behaviors in long-horizon tasks from expert demonstrations by modeling the task hierarchy with the option framework. Existing methods either overlook the causal relationship between the subtask and its corresponding policy or cannot learn the policy in an end-to-end fashion, which leads to suboptimality. In this work, we develop a novel HIL algorithm based on Adversarial Inverse Reinforcement Learning and adapt it with the Expectation-Maximization algorithm in order to directly recover a hierarchical policy from the unannotated demonstrations. Further, we introduce a directed information term to the objective function to enhance the causality and propose a Variational Autoencoder framework for learning with our objectives in an end-to-end fashion. Theoretical justifications and evaluations on challenging robotic control tasks are provided to show the superiority of our algorithm.
Original languageEnglish (US)
Title of host publication2023 IEEE International Conference on Robotics and Automation (ICRA)
PublisherIEEE
DOIs
StatePublished - Jul 4 2023

Bibliographical note

KAUST Repository Item: Exported on 2023-07-07

Fingerprint

Dive into the research topics of 'Option-Aware Adversarial Inverse Reinforcement Learning for Robotic Control'. Together they form a unique fingerprint.

Cite this