Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

Duo Mao, Manuel Angel Quevedo Quevedo-López, Harvey J. Stiegler, Bruce E. Gnade, Husam N. Alshareef

Research output: Contribution to journalArticlepeer-review

111 Scopus citations


The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.
Original languageEnglish (US)
Pages (from-to)925-932
Number of pages8
JournalOrganic Electronics
Issue number5
StatePublished - May 2010

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors thank the Army Research Laboratory (ARL) for partial financial support of this project. We would also like to thank Dr. Eric Forsythe of ARL for very helpful discussions regarding non-volatile memory integration.

ASJC Scopus subject areas

  • Materials Chemistry
  • Biomaterials
  • General Chemistry
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Condensed Matter Physics


Dive into the research topics of 'Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics'. Together they form a unique fingerprint.

Cite this