Abstract
Background: The key challenge in drug discovery is to discover novel compounds with desirable properties. Among the properties, binding affinity to a target is one of the prerequisites and usually evaluated by molecular docking or quantitative structure activity relationship (QSAR) models. Methods: In this study, we developed SGPT-RL, which uses a generative pre-trained transformer (GPT) as the policy network of the reinforcement learning (RL) agent to optimize the binding affinity to a target. SGPT-RL was evaluated on the Moses distribution learning benchmark and two goal-directed generation tasks, with Dopamine Receptor D2 (DRD2) and Angiotensin-Converting Enzyme 2 (ACE2) as the targets. Both QSAR model and molecular docking were implemented as the optimization goals in the tasks. The popular Reinvent method was used as the baseline for comparison. Results: The results on the Moses benchmark showed that SGPT-RL learned good property distributions and generated molecules with high validity and novelty. On the two goal-directed generation tasks, both SGPT-RL and Reinvent were able to generate valid molecules with improved target scores. The SGPT-RL method achieved better results than Reinvent on the ACE2 task, where molecular docking was used as the optimization goal. Further analysis shows that SGPT-RL learned conserved scaffold patterns during exploration. Conclusions: The superior performance of SGPT-RL in the ACE2 task indicates that it can be applied to the virtual screening process where molecular docking is widely used as the criteria. Besides, the scaffold patterns learned by SGPT-RL during the exploration process can assist chemists to better design and discover novel lead candidates.
Original language | English (US) |
---|---|
Article number | 757 |
Journal | F1000Research |
Volume | 12 |
DOIs | |
State | Published - 2024 |
Bibliographical note
Publisher Copyright:Copyright: © 2024 Xu X et al.
Keywords
- Drug design
- hit discovery
- molecular docking
- reinforcement learning
- transformers
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Pharmacology, Toxicology and Pharmaceutics