Optimization of a 3D bioprinting process using ultrashort peptide bioinks

Zainab Khan, Kowther Kahin, Sakandar Rauf, Gustavo Ramirez Calderon, Nikolaos Papagiannis, Mohammed Abdulmajid, Charlotte Hauser

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


The field of three-dimensional (3D) bioprinting is rapidly emerging as an additive manufacturing method for tissue and organ fabrication. The demand for tissues and organ transplants is ever increasing, although donors are not as readily available. Consequently, tissue engineering is gaining much attention to alleviate this problem. The process of achieving well-structured 3D bioprinted constructs using hydrogel bioinks depends on symmetrical precision, regulated flow rates, and viability of cells. Even with the mentioned parameters optimized, the printed structures need additional refining by removing excessive liquids, as peptide hydrogel bioprints encapsulate water. However, it is challenging to eliminate the confined fluids without compromising the printing process. In this paper, we introduced a vacuum system to our 3D bioprinting robotic arm and thus optimized the printing quality for complex and refined 3D scaffolds. Moreover, the proposed vacuum system supports printing with cells. Our results show improved printing resolution which facilitates the printing of higher and more stable structures.
Original languageEnglish (US)
JournalInternational Journal of Bioprinting
Issue number1
StatePublished - Dec 13 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research was supported by funding from King Abdullah University for Science and Technology (KAUST).


Dive into the research topics of 'Optimization of a 3D bioprinting process using ultrashort peptide bioinks'. Together they form a unique fingerprint.

Cite this