Optimal Time Complexities of Parallel Stochastic Optimization Methods Under a Fixed Computation Model

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

Parallelization is a popular strategy for improving the performance of iterative algorithms. Optimization methods are no exception: design of efficient parallel optimization methods and tight analysis of their theoretical properties are important research endeavors. While the minimax complexities are well known for sequential optimization methods, the theory of parallel optimization methods is less explored. In this paper, we propose a new protocol that generalizes the classical oracle framework approach. Using this protocol, we establish minimax complexities for parallel optimization methods that have access to an unbiased stochastic gradient oracle with bounded variance. We consider a fixed computation model characterized by each worker requiring a fixed but worker-dependent time to calculate stochastic gradient. We prove lower bounds and develop optimal algorithms that attain them. Our results have surprising consequences for the literature of asynchronous optimization methods.

Original languageEnglish (US)
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period12/10/2312/16/23

Bibliographical note

Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Optimal Time Complexities of Parallel Stochastic Optimization Methods Under a Fixed Computation Model'. Together they form a unique fingerprint.

Cite this