Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis

Michael Barton, Victor M. Calo

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

We introduce optimal quadrature rules for spline spaces that are frequently used in Galerkin discretizations to build mass and stiffness matrices. Using the homotopy continuation concept (Bartoň and Calo, 2016) that transforms optimal quadrature rules from source spaces to target spaces, we derive optimal rules for splines defined on finite domains. Starting with the classical Gaussian quadrature for polynomials, which is an optimal rule for a discontinuous odd-degree space, we derive rules for target spaces of higher continuity. We further show how the homotopy methodology handles cases where the source and target rules require different numbers of optimal quadrature points. We demonstrate it by deriving optimal rules for various odd-degree spline spaces, particularly with non-uniform knot sequences and non-uniform multiplicities. We also discuss convergence of our rules to their asymptotic counterparts, that is, the analogues of the midpoint rule of Hughes et al. (2010), that are exact and optimal for infinite domains. For spaces of low continuities, we numerically show that the derived rules quickly converge to their asymptotic counterparts as the weights and nodes of a few boundary elements differ from the asymptotic values.
Original languageEnglish (US)
Pages (from-to)217-240
Number of pages24
JournalComputer Methods in Applied Mechanics and Engineering
Volume305
DOIs
StatePublished - Mar 14 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Mechanics of Materials
  • Mechanical Engineering
  • Computational Mechanics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis'. Together they form a unique fingerprint.

Cite this