Abstract
The relay positions or hop distances in a multi-hop relaying scheme is an important parameter that can be optimized in order to mitigate the angle-of-arrival variance or pointing error in a free-space optical (FSO) backhaul link. In this study, we have optimized the relay positions for amplify-and-forward and decode-and-forward relays in a multi-hop unmanned aerial vehicle-based relaying scheme for FSO. Particularly, we have shown that a significant performance improvement may be achieved by optimizing the outage probability as a function of the hop distance for amplify-and-forward relays when the relays are constrained by a finite power gain. Additionally, we have discovered that for a low signal-to-noise ratio channel, the optimal hop distance of a particular hop for decode-and-forward relays is inversely proportional to angle-of-arrival variance in that hop.
Original language | English (US) |
---|---|
Pages (from-to) | 1-1 |
Number of pages | 1 |
Journal | IEEE Transactions on Communications |
DOIs | |
State | Published - Sep 6 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-09-09Acknowledgements: This work was supported by the Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST)
ASJC Scopus subject areas
- Electrical and Electronic Engineering