Optimal full-waveform inversion strategy for marine data in azimuthally rotated elastic orthorhombic media

Research output: Contribution to journalArticlepeer-review

21 Scopus citations


The orthorhombic (ORT) anisotropic description of earth layers can allow the capture of much of the earth's anisotropic complexity. The inversion for high-resolution azimuthal variation of anisotropy is important for reservoir characterization, among other applications. A high-resolution description of the azimuth of fractures can help us to predict flow preferences. To verify the feasibility of multiparameter full-waveform inversion (FWI) for marine data assuming azimuthally rotated elastic ORT media, we have analyzed the radiation patterns and gradient directions of ORT parameters to the reflection data. First, we express the gradient direction of the ORT parameters considering the azimuthal rotation of the symmetric planes. Then, to support our observations in the gradient direction, the radiation patterns of the partial derivative wavefields from each parameter perturbation are also derived under the rotated elastic ORT assumption. To find an optimal parameterization, we compare three different parameterizations: monoclinic, velocity-based, and hierarchical parameterizations. Then, we suggest an optimal multistage update strategy by analyzing the behavior of the rotation angle as a FWI target. To analyze the trade-off among parameters in different parameterizations, we calculate the gradient direction from a hockey-puck model, in which each parameter is perturbed at the different location on a horizontal layer. The trade-off analysis supports that the hierarchical parameterization provides us with more opportunities to build up subsurface models with less trade-off between parameters and less influence of the azimuthal rotation of ORT anisotropy. The feasibility of the proposed FWI strategy is examined using synthetic marine streamer data from a simple 3D reservoir model with a fractured layer.

Original languageEnglish (US)
Pages (from-to)R307-R320
Issue number4
StatePublished - Jul 1 2018

Bibliographical note

Publisher Copyright:
© 2018 Society of Exploration Geophysicists.


  • Fracture direction
  • Full-waveform inversion
  • Hierarchical parameterization
  • Radiation-pattern analysis
  • Rotated orthorhombic media

ASJC Scopus subject areas

  • Geochemistry and Petrology


Dive into the research topics of 'Optimal full-waveform inversion strategy for marine data in azimuthally rotated elastic orthorhombic media'. Together they form a unique fingerprint.

Cite this