Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators

Abla Kammoun, Romain Couillet, Frederic Pascal, Mohamed-Slim Alouini

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

This article addresses improvements on the design of the adaptive normalized matched filter (ANMF) for radar detection. It is well-acknowledged that the estimation of the noise-clutter covariance matrix is a fundamental step in adaptive radar detection. In this paper, we consider regularized estimation methods which force by construction the eigenvalues of the covariance estimates to be greater than a positive regularization parameter ρ. This makes them more suitable for high dimensional problems with a limited number of secondary data samples than traditional sample covariance estimates. The motivation behind this work is to understand the effect and properly set the value of ρthat improves estimate conditioning while maintaining a low estimation bias. More specifically, we consider the design of the ANMF detector for two kinds of regularized estimators, namely the regularized sample covariance matrix (RSCM), the regularized Tyler estimator (RTE). The rationale behind this choice is that the RTE is efficient in mitigating the degradation caused by the presence of impulsive noises while inducing little loss when the noise is Gaussian. Based on asymptotic results brought by recent tools from random matrix theory, we propose a design for the regularization parameter that maximizes the asymptotic detection probability under constant asymptotic false alarm rates. Provided Simulations support the efficiency of the proposed method, illustrating its gain over conventional settings of the regularization parameter.
Original languageEnglish (US)
Pages (from-to)755-769
Number of pages15
JournalIEEE Transactions on Aerospace and Electronic Systems
Volume54
Issue number2
DOIs
StatePublished - Oct 25 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Couillet’s work is supported by the ANR Project RMT4GRAPH (ANR-14-CE28-0006).

Fingerprint

Dive into the research topics of 'Optimal Design of the Adaptive Normalized Matched Filter Detector using Regularized Tyler Estimators'. Together they form a unique fingerprint.

Cite this