TY - JOUR
T1 - Optimal Deployment of Tethered Drones for Maximum Cellular Coverage in User Clusters
AU - Bushnaq, Osama
AU - Kishk, Mustafa Abdelsalam
AU - Celik, Abdulkadir
AU - Alouini, Mohamed-Slim
AU - Al-Naffouri, Tareq Y.
N1 - KAUST Repository Item: Exported on 2020-12-02
PY - 2020
Y1 - 2020
N2 - Unmanned aerial vehicles (UAVs) have recently received a significant interest to assist terrestrial wireless networks thanks to their strong line-of-sight links and flexible/instant deployment. However, UAVs’ assistance is limited by their battery lifetime and wireless backhaul link capacity. At the expense of limited mobility, tethered UAVs (T-UAVs) can be a viable alternative to provide seamless service over a cable that simultaneously supplies power and data from a ground station (GS). Accordingly, this paper presents a comparative performance analysis of T-UAV and regular/untethered UAV (U-UAV)-assisted cellular traffic offloading from a geographical area that undergoes heavy traffic conditions. By using stochastic geometry tools, we first derive joint distance distributions between the hot-spot users, the terrestrial base station (TBS), and the UAV. To maximize the endto- end signal-to-noise ratio, a user association policy is developed, and corresponding association regions are analytically identified. Then, the overall coverage probability of the U-UAV/T-UAV-assisted system is derived for given locations of the TBS and the U-UAV/T-UAV. Moreover, we analytically prove that optimal UAV location falls within a partial surface of the spherical cone centered at the GS. Numerical results show that T-UAV outperforms U-UAV given that sufficient GS locations accessibility and tether length are provided.
AB - Unmanned aerial vehicles (UAVs) have recently received a significant interest to assist terrestrial wireless networks thanks to their strong line-of-sight links and flexible/instant deployment. However, UAVs’ assistance is limited by their battery lifetime and wireless backhaul link capacity. At the expense of limited mobility, tethered UAVs (T-UAVs) can be a viable alternative to provide seamless service over a cable that simultaneously supplies power and data from a ground station (GS). Accordingly, this paper presents a comparative performance analysis of T-UAV and regular/untethered UAV (U-UAV)-assisted cellular traffic offloading from a geographical area that undergoes heavy traffic conditions. By using stochastic geometry tools, we first derive joint distance distributions between the hot-spot users, the terrestrial base station (TBS), and the UAV. To maximize the endto- end signal-to-noise ratio, a user association policy is developed, and corresponding association regions are analytically identified. Then, the overall coverage probability of the U-UAV/T-UAV-assisted system is derived for given locations of the TBS and the U-UAV/T-UAV. Moreover, we analytically prove that optimal UAV location falls within a partial surface of the spherical cone centered at the GS. Numerical results show that T-UAV outperforms U-UAV given that sufficient GS locations accessibility and tether length are provided.
UR - http://hdl.handle.net/10754/666008
UR - https://arxiv.org/abs/2003.00713
U2 - 10.1109/TWC.2020.3039013
DO - 10.1109/TWC.2020.3039013
M3 - Article
SN - 1536-1276
SP - 1
EP - 1
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
ER -