One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis

Ali Han, Xiaofeng Zhou, Xijun Wang, Sheng Liu, Qihua Xiong, Qinghua Zhang, Lin Gu, Zechao Zhuang, Wenjing Zhang, Fanxing Li, Dingsheng Wang, Lain-Jong Li, Yadong Li

Research output: Contribution to journalArticlepeer-review

181 Scopus citations

Abstract

AbstractMetallic tungsten disulfide (WS2) monolayers have been demonstrated as promising electrocatalysts for hydrogen evolution reaction (HER) induced by the high intrinsic conductivity, however, the key challenges to maximize the catalytic activity are achieving the metallic WS2 with high concentration and increasing the density of the active sites. In this work, single-atom-V catalysts (V SACs) substitutions in 1T-WS2 monolayers (91% phase purity) are fabricated to significantly enhance the HER performance via a one-step chemical vapor deposition strategy. Atomic-resolution scanning transmission electron microscopy (STEM) imaging together with Raman spectroscopy confirm the atomic dispersion of V species on the 1T-WS2 monolayers instead of energetically favorable 2H-WS2 monolayers. The growth mechanism of V SACs@1T-WS2 monolayers is experimentally and theoretically demonstrated. Density functional theory (DFT) calculations demonstrate that the activated V-atom sites play vital important role in enhancing the HER activity. In this work, it opens a novel path to directly synthesize atomically dispersed single-metal catalysts on metastable materials as efficient and robust electrocatalysts.
Original languageEnglish (US)
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - Jan 29 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-02-01
Acknowledgements: L.L. acknowledges support from King Abdullah University of Science and Technology (Saudi Arabia). Y.L. and D.W. acknowledge support from the National Key R&D Program of China (2018YFA0702003) and the National Natural Science Foundation of China (21890383, 21671117, 21871159). W.Z. acknowledges support from the Educational Commission of Guangdong Province project (No.2015KGJHZ006).

Fingerprint

Dive into the research topics of 'One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis'. Together they form a unique fingerprint.

Cite this