On the robustness and performance of entropy stable collocated discontinuous Galerkin methods

Diego B. Rojas, Radouan Boukharfane, Lisandro Dalcin, David C. Del Rey Fernández, Hendrik Ranocha, David E. Keyes, Matteo Parsani

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In computational fluid dynamics, the demand for increasingly multidisciplinary reliable simulations, for both analysis and design optimization purposes, requires transformational advances in individual components of future solvers. At the algorithmic level, hardware compatibility and efficiency are of paramount importance in determining viability at exascale and beyond. However, equally important (if not more so) is algorithmic robustness with minimal user intervention, which becomes progressively more challenging to achieve as problem size and physics complexity increase. We numerically show that low and high order entropy stable collocated discontinuous Galerkin discretizations based on summation-by-part operators and simultaneous-approximationterms technique provide an essential step toward a truly enabling technology in terms of reliability and robustness for both under-resolved turbulent flow simulations and flows with discontinuities.
Original languageEnglish (US)
Pages (from-to)109891
JournalJournal of Computational Physics
DOIs
StatePublished - Oct 22 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-10-30
Acknowledgements: The research reported in this paper was funded by King Abdullah University of Science and Technology. We are thankful for the computing resources of the Supercomputing Laboratory and the Extreme Computing Research Center at King Abdullah University of Science and Technology.

Fingerprint

Dive into the research topics of 'On the robustness and performance of entropy stable collocated discontinuous Galerkin methods'. Together they form a unique fingerprint.

Cite this