On the Placement of UAV Docking Stations for Future Intelligent Transportation Systems

Hakim Ghazzai, Hamid Menouar, Abdullah Kadri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

34 Scopus citations

Abstract

Unmanned Aerial Vehicles (UAV) have attracted a lot of attention in a variety of fields especially in intelligent transportation systems (ITS). They constitute an innovative mean to support existing technologies to control road traffic and monitor incidents. Due to their energy-limited capacity, UAVs are employed for temporary missions and, during idle periods, they are placed in stations where they can replenish their batteries. In this paper, the problem of UAV docking station placement for ITS is investigated. This constitutes the first step in managing UAV- assisted ITS. The objective is to determine the best locations for a given number of docking stations that the operator aims to install in a large geographical area. Based on average road network statistics, two essential conditions are imposed in making the placement decision: i) the UAV has to reach the incident location in a reasonable time, ii) there is no risk of UAV's battery failure during the mission. Two algorithms, namely a penalized weighted k-means algorithm and the particle swarm optimization algorithm, are proposed. Results show that both algorithms achieve close coverage efficiency in spite of their different conceptual constructions.
Original languageEnglish (US)
Title of host publicationIEEE Vehicular Technology Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781509059324
DOIs
StatePublished - Nov 14 2017
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-09-23

Fingerprint

Dive into the research topics of 'On the Placement of UAV Docking Stations for Future Intelligent Transportation Systems'. Together they form a unique fingerprint.

Cite this