On the design of subwavelength waveguiding structures for terahertz Applications

Vikas Singal, Sami Smaili, Yehia Massoud

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Closing the THz gap would lead to a tremendous of advancement in a wide range of applications such as biomedical imaging, security, and material inspection. The gap refers to the lack of devices for the manipulation of THz radiation as compared to its microwave and optical counterparts. Plasmonic devices based on semiconductors rather than metals allow the realization of efficient and small scale THz devices by utilizing the unique properties of plasmon oscillations. In this paper, we investigate the performance of an InSb-SiO 2-InSb structure for THz waveguiding. We study the propagation length and the skin depth of the symmetric and antisymmetric transverse magnetic modes of these waveguides. We use numerical techniques to solve for the dispersion relation and derive the propagation length and the skin depth as a function of frequency. © 2012 IEEE.
Original languageEnglish (US)
Title of host publication2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012
Pages506-510
Number of pages5
DOIs
StatePublished - Jun 1 2012
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

Fingerprint

Dive into the research topics of 'On the design of subwavelength waveguiding structures for terahertz Applications'. Together they form a unique fingerprint.

Cite this