TY - JOUR
T1 - On the convergence of adaptive sequential monte carlo methods
AU - Beskos, Alexandros
AU - Jasra, Ajay
AU - Kantas, Nikolas
AU - Thiery, Alexandre
N1 - Generated from Scopus record by KAUST IRTS on 2019-11-20
PY - 2016/4/1
Y1 - 2016/4/1
N2 - In several implementations of Sequential Monte Carlo (SMC) methods it is natural and important, in terms of algorithmic efficiency, to exploit the information of the history of the samples to optimally tune their subsequent propagations. In this article we provide a carefully formulated asymptotic theory for a class of such adaptive SMC methods. The theoretical framework developed here will cover, under assumptions, several commonly used SMC algorithms [Chopin, Biometrika 89 (2002) 539-551; Jasra et al., Scand. J. Stat. 38 (2011) 1-22; Schäfer and Chopin, Stat. Comput. 23 (2013) 163- 184]. There are only limited results about the theoretical underpinning of such adaptive methods: We will bridge this gap by providing a weak law of large numbers (WLLN) and a central limit theorem (CLT) for some of these algorithms. The latter seems to be the first result of its kind in the literature and provides a formal justification of algorithms used in many real data contexts [Jasra et al. (2011); Schäfer and Chopin (2013)]. We establish that for a general class of adaptive SMC algorithms [Chopin (2002)], the asymptotic variance of the estimators from the adaptive SMC method is identical to a "limiting" SMC algorithm which uses ideal proposal kernels. Our results are supported by application on a complex high-dimensional posterior distribution associated with the Navier-Stokes model, where adapting highdimensional parameters of the proposal kernels is critical for the efficiency of the algorithm.
AB - In several implementations of Sequential Monte Carlo (SMC) methods it is natural and important, in terms of algorithmic efficiency, to exploit the information of the history of the samples to optimally tune their subsequent propagations. In this article we provide a carefully formulated asymptotic theory for a class of such adaptive SMC methods. The theoretical framework developed here will cover, under assumptions, several commonly used SMC algorithms [Chopin, Biometrika 89 (2002) 539-551; Jasra et al., Scand. J. Stat. 38 (2011) 1-22; Schäfer and Chopin, Stat. Comput. 23 (2013) 163- 184]. There are only limited results about the theoretical underpinning of such adaptive methods: We will bridge this gap by providing a weak law of large numbers (WLLN) and a central limit theorem (CLT) for some of these algorithms. The latter seems to be the first result of its kind in the literature and provides a formal justification of algorithms used in many real data contexts [Jasra et al. (2011); Schäfer and Chopin (2013)]. We establish that for a general class of adaptive SMC algorithms [Chopin (2002)], the asymptotic variance of the estimators from the adaptive SMC method is identical to a "limiting" SMC algorithm which uses ideal proposal kernels. Our results are supported by application on a complex high-dimensional posterior distribution associated with the Navier-Stokes model, where adapting highdimensional parameters of the proposal kernels is critical for the efficiency of the algorithm.
UR - http://projecteuclid.org/euclid.aoap/1458651829
UR - http://www.scopus.com/inward/record.url?scp=84964326600&partnerID=8YFLogxK
U2 - 10.1214/15-AAP1113
DO - 10.1214/15-AAP1113
M3 - Article
SN - 1050-5164
VL - 26
JO - Annals of Applied Probability
JF - Annals of Applied Probability
IS - 2
ER -