Abstract
Today's mobile service providers aim at ensuring end-to-end performance guarantees. Hence, ensuring an efficient content delivery to end users is highly required. Currently, transmitting popular contents in modern mobile networks rely on unicast transmission. This result into a huge underutilization of the wireless bandwidth. The urban scale mobility of users is beneficial for mobile networks to allocate radio resources spatially and temporally for broadcasting contents. In this paper, we conduct a comprehensive analysis on a human activity/mobility model and the content broadcasting system in 5G mobile networks. The objective of this work is to describe how human daily activities could improve the content broadcasting efficiency. We achieve the objective by analyzing the transition probabilities of a user traveling over several places according to the change of states of daily human activities. Using a reallife simulation, we demonstrate the relationship between the human mobility and the optimization objective of the content broadcasting system.
Original language | English (US) |
---|---|
Title of host publication | 2017 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications |
Subtitle of host publication | Engaged Citizens and their New Smart Worlds, PIMRC 2017 - Conference Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1-7 |
Number of pages | 7 |
ISBN (Electronic) | 9781538635315 |
DOIs | |
State | Published - Jul 2 2017 |
Event | 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017 - Montreal, Canada Duration: Oct 8 2017 → Oct 13 2017 |
Publication series
Name | IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC |
---|---|
Volume | 2017-October |
Conference
Conference | 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2017 |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 10/8/17 → 10/13/17 |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
ASJC Scopus subject areas
- Electrical and Electronic Engineering