Abstract
This study explores the reconstruction of a signal using spectral quantities associated with some self-adjoint realization of an h-dependent Schrödinger operator -h2(d2/dx2)-y(x), h>0, when the parameter h tends to 0. Theoretical results in semi-classical analysis are proved. Some numerical results are also presented. We first consider as a toy model the sech2 function. Then we study a real signal given by arterial blood pressure measurements. This approach seems to be very promising in signal analysis. Indeed it provides new spectral quantities that can give relevant information on some signals as it is the case for arterial blood pressure signal. © 2011 - IOS Press and the authors. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 125-144 |
Number of pages | 20 |
Journal | Asymptotic Analysis |
Volume | 75 |
Issue number | 3-4 |
DOIs | |
State | Published - Dec 1 2011 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01ASJC Scopus subject areas
- General Mathematics