Ocean-atmosphere circulation coherences associated with temperature increase in Pakistan

Azfar Hussain, Ishtiaq Hussain, Shaukat Ali, Waheed Ullah, Abolfazl Rezaei, Shaukat Ali, Safi Ullah, Haider Abbas, Asima Manzoom, Jinxing Zhou, Jianhua Cao

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In recent decades, temperature variations have significantly affected the ecosystem and human livelihood in Pakistan. The wavelet analysis is employed to identify the associations between regional temperature change and global teleconnections, i.e. Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Tropical Northern Atlantic Index (TNA), Pacific/North American Index (PNA), North Pacific Pattern (NP), Western Pacific Index (WP), and Western Hemisphere Warm Pool (WHWP). This paper first uses monotonic modified Mann–Kendall and Sen's slope estimator to compute the temperature changes in Pakistan and its homogenous climatic regions during 1960–2020. It is found that the temperature in Pakistan has increased significantly at 0.23 °C dec−1 in the last 62 years, which is also higher than the global average increase. This increase is more evident in region IV and V in spring at 0.63 and 0.43 °C dec−1 respectively, followed by summer and autumn. Temperature changes in Pakistan and its sub-regions are mainly associated with NP, WP and WHWP with higher mean significant coherences. Overall, temperature changes are significantly influenced by multiple interactions of global teleconnections, and these combinations indicate that the integrated influence of teleconnections can better explain the regional temperature changes. The teleconnections with broader significant influence over Pakistan are NP + WP + WHWP, followed by Pacific-based (ENSO, PDO, and PNA), and Atlantic-based (AMO, AO, and NAO) indices as revealed by the mean significant coherences of 0.82, 0.82 and 0.72 respectively. Annually, AMO, TNA and WHWP showed significant correlation with higher magnitudes of 0.44, 0.42 and 0.20 respectively, indicating the modulation effect of these teleconnections on temperature changes over Pakistan. The combined impacts from the various teleconnections represent a considerable advancement in the accuracy of significant temperature variations over the country. These findings have significant implications for policymakers in terms of better planning and policies in light of climate change as well as atmospheric circulation variability.
Original languageEnglish (US)
JournalEnvironmental Research Letters
DOIs
StatePublished - Aug 24 2023

Bibliographical note

KAUST Repository Item: Exported on 2023-09-05
Acknowledgements: The authors acknowledge Pakistan Meteorology Department for providing temperature data. This research was supported by the National Natural Science Foundation of China, Grant No. 31870707.

ASJC Scopus subject areas

  • General Environmental Science
  • Public Health, Environmental and Occupational Health
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Ocean-atmosphere circulation coherences associated with temperature increase in Pakistan'. Together they form a unique fingerprint.

Cite this