Abstract
We compare the electronic properties of O deficient LaAlO3/SrTiO3 superlattices oriented along the (001) and (110) directions, taking into account the effect of hydrostatic compression and tension. Interfacial O vacancies turn out to be less likely in the case of the (110) orientation, with compression (tension) reducing (enhancing) the energy cost for both orientations. The presence of O vacancies results in the formation of a two-dimensional electron gas, for which we observe a distinct spatial pattern of carrier density that depends strongly on the amount of applied pressure. We clarify the interrelation between structural features and the properties of this electron gas (confinement, carrier density, and mobility).
Original language | English (US) |
---|---|
Pages (from-to) | 3336-3342 |
Number of pages | 7 |
Journal | J. Mater. Chem. C |
Volume | 5 |
Issue number | 13 |
DOIs | |
State | Published - 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). For computer time, this research used the resources of the Supercomputing Laboratory at KAUST.