Numerical simulation and flight experiment on oscillating lifted flames in coflow jets with gravity level variation

J. Kim, K. N. Kim, S. H. Won, O. Fujita, J. Takahashi, S. H. Chung*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Characteristics of oscillating lifted flames have been investigated numerically and experimentally by varying the gravity level in coflow jets with propane fuel highly diluted with nitrogen. The results showed that the oscillation amplitude and frequency increased with gravity level. As the gravity level decreased, the oscillation ceased and stationary lifted flames were stabilized when the gravity level became smaller than a critical value. A flame blowout occurred at high gravity levels. The reason for this limited range of oscillation has been analyzed by considering the local characteristics of the propagation speed of tribrachial (triple) flame and axial velocity at the edges of lifted flames. Considerations of the maximum and minimum values of these two components with gravity level during the flame edge oscillation could successfully explain the lower bounds of oscillation accounting for the influences of buoyancy and flame curvature. The blowout at high gravity levels can be explained by the effect of buoyancies on burnt gas and on propane fuel in such a way that the stoichiometric contour near the flame zone became detached from the contour near the nozzle. Finally, the experiments by varying gravity level through the parabolic flights of an aircraft substantiated the overall behavior of the oscillating lifted flames.

Original languageEnglish (US)
Pages (from-to)181-193
Number of pages13
JournalCombustion and Flame
Volume145
Issue number1-2
DOIs
StatePublished - Apr 2006
Externally publishedYes

Keywords

  • Flame oscillation
  • Instability
  • Lifted flame
  • Tribrachial (triple) flame

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Numerical simulation and flight experiment on oscillating lifted flames in coflow jets with gravity level variation'. Together they form a unique fingerprint.

Cite this