Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation

Shantanu Mishra, Shadi Fatayer, Saleta Fernández, Katharina Kaiser, Diego Peña, Leo Gross

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

We report the on-surface synthesis of a nonbenzenoid triradical through dehydrogenation of truxene (C27H18) on coinage metal and insulator surfaces. Voltage pulses applied via the tip of a combined scanning tunneling microscope/atomic force microscope were used to cleave individual C-H bonds in truxene. The resultant final product truxene-5,10,15-triyl (1) was characterized at the single-molecule scale using a combination of atomic force microscopy, scanning tunneling microscopy, and scanning tunneling spectroscopy. Our analyses show that 1 retains its open-shell quartet ground state, predicted by density functional theory, on a two monolayer-thick NaCl layer on a Cu(111) surface. We image the frontier orbital densities of 1 and confirm that they correspond to spin-split singly occupied molecular orbitals. Through our synthetic strategy, we also isolate two reactive intermediates toward the synthesis of 1, derivatives of fluorenyl radical and indeno[1,2-a]fluorene, with predicted open-shell doublet and triplet ground states, respectively. Our results should have bearings on the synthesis of nonbenzenoid high-spin polycyclic frameworks with magnetism beyond Lieb’s theorem.
Original languageEnglish (US)
Pages (from-to)3264-3271
Number of pages8
JournalACS Nano
Volume16
Issue number2
DOIs
StatePublished - Feb 22 2022
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-13

ASJC Scopus subject areas

  • General Physics and Astronomy
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Nonbenzenoid High-Spin Polycyclic Hydrocarbons Generated by Atom Manipulation'. Together they form a unique fingerprint.

Cite this